
Programmable Virtual Reality Environments
Nanlin Sun*

Virginia Tech, USA
Annette Feng†

Virginia Tech, USA
Ryan Patton‡

Virginia Commonwealth University, USA
Yotam Gingold§

George Mason University, USA

Wallace Lages¶

Virginia Tech, USA

ABSTRACT

We present a programmable virtual environment that allows users to
create and manipulate 3D objects via code while inside virtual reality.
Our environment supports the control of 3D transforms, physical,
and visual properties. Programming is done by means of a custom
visual block-language that is translated into Lua language scripts.
We believed that the direction of this project will benefit computer
science education in helping students to learn programming and
spatial thinking more efficiently.

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interaction paradigms—Virtual reality;
Human-centered computing—Human computer interaction (HCI)—
Interactive systems and tools—User interface programming;

1 INTRODUCTION

Programming and computational thinking skills are essential for
success in many disciplines, including science and the arts. However,
programming can be intimidating to many students. Learning to
program involves not only an understanding of the language syntax
and idiom but also how to translate problems and their solutions
in a way that can actually be solved by a computer. Block-based
languages (BBL) such as Scratch [4] became part of the computer
science education landscape since they allow users to program by
manipulating visual elements instead of text.

On the other hand, psychological aspects such as motivation, and
self-efficacy are also important for student success. Virtual environ-
ments (VE) provide an opportunity for creating rich and immersive
experiences that are more engaging than the ones from traditional
learning environments. For this reason, virtual environments have
been explored as a way to support learning in many different do-
mains.

My Reality (MYR) is an application that combines programming
with a virtual reality visualization [1]. VR was found beneficial for
presenting abstract computer science concepts in a more tangible
way for novice programmers. However, MYR requires users to use
the code editor on a Web-Based platform outside VR to write the
code. We believe that an all-in-one experience in VR would smooth
the workflow (users don’t have to switch back and forth between
two platforms when making modifications to their current work).

Another VR coding environment is the 3D Virtual Programming
Language (3D-VPL). Instead of using a 2D canvas, 3D-VPL uses
tridimensional blocks to represent classes and objects. Users can
move around and add or remove objects allowing them to visualize
programming concepts [3]. Unlike 3D-VPL, our environment uses
a true block language, and requires less user interaction on the

*e-mail: nannie@vt.edu
†e-mail: afeng@vt.edu
‡e-mail: rpatton@vcu.edu
§e-mail: ygingold@gmu.edu
¶e-mail: wlages@vt.ed

Figure 1: User avatar inside the programmable virtual environment

manual code organization as the code lines grow large; intuitive user
input and interaction in VR is also of great importance for coding
efficiency and user experience (UE).

In our work, we built an all-in-one programmable VR environ-
ment with many features including the ability to write, execute, and
pause, save and load code. To evaluate our application we devel-
oped an introductory curriculum that teaches users how to use the
programmable VR environment and gain a general knowledge of
programming. In this paper, we describe the technical and design
elements as well as our initial impressions of the system.

2 VIRTUAL REALITY PROGRAMMING

Our VR programming environment consists of an integrated coding
panel and menus for accessing and managing coding elements dur-
ing programming. The two-dimensional code editor uses a visual
block language inspired in Scratch to allow users to create blocks
minimum user input (Fig. 1). Using code, the user can instantiate
and manipulate objects in the same surrounding space. The user
could run and stop the execution of the code using dedicated play
and stop buttons in the 3D space. The environment was developed
using Unity 3D 1 and the Lua programming language 2.

2.1 Architecture
Our project uses a three-tier architecture, where the implementa-
tion is separated into the presentation layer, the logic layer, and the
data layer. The presentation layer manages the user input and the
interaction techniques that allow the user to interact with the VR
programming environment (code editor, pie menu, virtual keyboard,
etc.).It takes direct signals from user interaction and instructs the
logic layer to generate, compile, and execute the code. The logic
layer manages all the code related operations including code genera-
tion, runtime code compilation, and execution. Execution happens
by interpreting Lua code and calling the corresponding bindings in
the Unity C# runtime. The data layer is responsible for managing
both the memory instance of the code in the memory and serializes

1unity3d.com
2https://www.lua.org/

619

2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)

978-1-6654-4057-8/21/$31.00 ©2021 IEEE
DOI 10.1109/VRW52623.2021.00192

20
21

 IE
EE

 C
on

fe
re

nc
e

on
 V

irt
ua

l R
ea

lit
y

an
d

3D
 U

se
r I

nt
er

fa
ce

s A
bs

tra
ct

s a
nd

 W
or

ks
ho

ps
 (V

R
W

) |
 9

78
-1

-6
65

4-
40

57
-8

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
R

W
52

62
3.

20
21

.0
01

92

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 15,2025 at 22:38:07 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Loop block in the code editor. White lines indicate where
new statements can be added.

the code to the local file system. The data layer converts the code to
and from the serialized format.

2.2 Code Generation, compilation, and execution
The code generation is completed at runtime by the logic layer with
the help of the VR code editor. The VR code editor allows users
to write code by putting together code blocks. Each code block
represents a single unit of the element in programming, including a
single variable, a statement, and a code structure. The code editor
generates the code by concatenating all the string values of the
connected code blocks into a code script. The code script is then
sent to the runtime compiler for compilation and execution.

Currently, our runtime compiler runs in MoonSharp, a Lua inter-
preter written entirely in C# for the .NET, Mono, and Unity plat-
forms. It allows generated Lua Code to be executed on the fly. There
are, however, noticeable differences between C# and Lua Code. For
example, the lack of native support for coroutines and classes in Lua.
Thus, in order to utilize most of the potentials and functionalities of
C# at runtime, some of the wrapper functions and interfaces are set
up manually in C# for the MoonSharp in advance.

2.3 Interaction design
In order to provide natural interaction in VR, all the interaction
happens with six degrees of freedom controllers. Block selection
was implemented with a hand oriented pie menu instead of the
traditional palette used in Scratch (Fig. 3). Users activate the pie
menu by holding the side button of the VR controller. The pie menu
appears facing the users at the location of the VR controller when
the side button was initially pressed. The user can then make the
selection by hovering the VR controller over the pie menu option
and then release the side button. A code block of the selection will
be generated on the code editor and the user can use the controller
pointer to relocate the code block to the desired position in the code.

To enter variable names and numeric values, the user can use a
virtual keyboard below the code editor. Since controller pointing is
still one of the best options for selection-based text entry in VR, the
pointer is used to operate the keyboard, as well as for both block
manipulation [2].

2.4 Curriculum
We built objectives in modules and curriculum for users to follow in
order to teach them how to program in VR programming VE. We
have modules that are focusing on the concept and usage of variables,
conditional statements, loops, functions, algorithms, 3-D coordinate
systems, vectors, programming environment block language, etc.

By going through each module, users will learn not only how to
use the tools in our VE to code with proper input and interaction,
but also different programming concept, syntax, and logic.

Figure 3: The User selects the “No Less” code block on the pie menu
with the VR controller

3 DISCUSSION AND FUTURE WORK

Our preliminary expert evaluation indicates that the virtual environ-
ment is easy to operate. Users are able to procedurally instantiate
objects, move them in space, and change physical properties such
as color and collision response parameters. Creative ideas, such as
building infinite stairs made of small cubes and moving objects to
simulate candy rainfall are also possible. However, large changes
in the code are time-consuming, due to the need of dragging blocks
with the pointer. In addition, even though the pie menu reduces the
time necessary to create a new block, it is not as fast as the equivalent
mouse and keyboard interface.

Due to the noticeable differences between C# and Lua Code,
such as lack of support for coroutines and classes in Lua, some of
the wrapper functions and interfaces had to be set up manually in
C#. We plan to improve our runtime compiler by switching from
MoonSharp Lua to Roslyn C# in order to utilize most of the potential
of C#. We also plan to explore more options for block selection and
manipulation, as well as to conduct a formal user study.

4 CONCLUSION

We have presented the design and implementation of a pro-
grammable virtual reality environment based on a block-based visual
language. Our initial evaluation suggests that block languages are an
intuitive way to do programming in virtual environments. We plan
to continue to develop the interaction aspects to make large code
changes easier and more efficient.

ACKNOWLEDGMENTS

This research was funded in part by 4-VA, a collaborative partnership
for advancing the Commonwealth of Virginia.

REFERENCES

[1] C. Berns, G. Chin, J. Savitz, J. Kiesling, and F. Martin. Myr: A web-

based platform for teaching coding using vr. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education, pp. 77–83,

2019.

[2] P. Z. Marco Speicher, Anna Maria Feit and A. Krüger. Selection-based

text entry in virtual reality.

[3] F. R. Ortega, S. Bolivar, J. Bernal, A. Galvan, K. Tarre, N. Rishe, and

A. Barreto. Towards a 3d virtual programming language to increase

the number of women in computer science education. In 2017 IEEE
Virtual Reality Workshop on K-12 Embodied Learning through Virtual
& Augmented Reality (KELVAR), pp. 1–6. IEEE, 2017.

[4] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,

K. Brennan, A. Millner, E. Rosenbaum, J. S. Silver, B. Silverman, et al.

Scratch: Programming for all. Commun. Acm, 52(11):60–67, 2009.

620

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 15,2025 at 22:38:07 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T17:46:43-0400
	Preflight Ticket Signature

