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Virtual Reality Impacts on Novice Programmers’ Self-efficacy

Nanlin Sun and Wallace S. Lages

Fig. 1: Abacus immersive programming mode. Left: programming interface showing block selection and coding panel. Middle: example
of procedural generation. Right: example of one of the study tasks, which requires animating existing 3D models.

Abstract—Virtual Reality has been used to improve motivation and help in the visualization of complex computing topics. However,
few studies directly compared immersive and non-immersive environments. To address this limitation, we developed Abacus, a
programming environment that can run in both immersive and non-immersive modes. We conducted a between-subjects study
(n=40), with twenty participants assigned to the desktop mode and twenty participants assigned to the VR mode. Participants used a
block-based editor to complete two programming tasks: a non-spatial procedural task, and a spatial 3D math task. We found that VR
led to higher gains in self-efficacy and that the gain was significant for participants with lower initial levels of experience and spatial
skills.

Index Terms—Virtual reality, programming, block-based languages, cs education

1 INTRODUCTION

Recent advances in display, processor, and sensor technology have
renewed the interest in the educational use of virtual reality (VR) tech-
nologies. Virtual reality learning environments have the potential to
improve student’s learning in several areas. In particular, research indi-
cates that immersive technologies may be effective in supporting spatial
reasoning, a critical skill for many disciplines in science, technology,
engineering, mathematics, and the arts [51].

Although most programming languages are spatially agnostic, many
critical applications of computing happen in spatial domains [12]. In
mechanical engineering, programming may be used to design and sim-
ulate 3D structures; in geographic information systems, to understand
changes in cities and natural environments; in computer graphics, to
animate characters for movies and TV [53]. With the expansion of
augmented reality, 3D scanning, and 3D printing, spatial computation is
also becoming increasingly integrated with the everyday physical space.
Although spatial ability is correlated with programming skills [6], its in-
teraction with learning in immersive environments has not been directly
investigated.

Considering that virtual reality is an inherently spatial medium, we
hypothesized it could significantly improve the learning experience of
3D programming. We define 3D programming as the use of program-
ming constructs to express algorithms that operate on 3D space. In
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this paper, we investigate the impact of immersive environments on 3D
programming. Our goal was to understand the impact of VR on the
perception of competency and usability when compared to a similar
desktop application. Specifically, we seek to answer the following
questions:

• RQ1: What is the impact of VR on student’s perceptions of
competency in programming?

Most prior studies of VR effectiveness for learning have focused
on visual domains such as medicine or engineering. Although
there are multiple results about the impact of 3D non-immersive
programming tools, there is a very limited understanding of how
these results would transfer to VR.

• RQ2: How does VR impact the usability of block-based pro-
gramming?

Text programming consists primarily of symbolic input, a task
that is fairly inefficient in VR due to the lack of a keyboard.
By using a block-based editor, we expected to reduce the input
requirements enough to make the system usable.

To answer these questions, we developed Abacus, a tool that supports
3D programming in both VR and desktop modes. We used this tool
to investigate how VR programming affects learners’ beliefs in their
ability to develop 3D programming code when compared to traditional
desktop tools. Our results indicate that immersive programming virtual
environments can support higher increases in self-efficacy than non-VR
tools.

Our contributions are the following: (i) the design and implementa-
tion of Abacus, a visual 3D programming tool that allows both desktop
and VR programming; (ii) a study examining how VR affects the self-
efficacy of different learners’ when accounting for prior programming
experience and spatial ability; and (iii) the evaluation of the usability
and perceptions of programming inside virtual environments.
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2 BACKGROUND AND PRIOR WORK

2.1 Programming Self-Efficacy

Bandura introduced the concept of self-efficacy theory in an article
published in the journal Psychological Review in 1977 [1]. Bandura de-
fined self-efficacy beliefs (or expectancies) as beliefs about one’s ability
to do actions deemed required for achieving desired objectives. He
suggested that self-efficacy beliefs are fundamental drivers of human
behavior and presented the self-efficacy theory as a unifying explana-
tion for multiple categories of behavior change, including the impacts
of psychological therapies and psychotherapy. Standard instruments for
measuring self-efficacy are the Motivated Strategies for Learning Ques-
tionnaire (MSLQ) [44] and the Computer Programming Self-Efficacy
Scale (CPSES) [47].

According to Ramalingam et al., self-efficacy is more important as
a determinant of introductory programming learning than other possi-
ble factors (intellectual ability, previous mathematics and computing
experience, goal orientation, use of learning strategies, and nature of
the conceptual model of the domain) [47]. Their study on computer
programming self-efficacy found evidence that self-efficacy is more
malleable during the learning process: novice programming learners
are more willing to take on challenging tasks and display higher effort
and persistence in achieving them. They also found that the student’s
self-efficacy was highly responsive to performance achievements in
the early stages of skill attainment, particularly in students with initial
low self-efficacy. Unfortunately, their study was designed primarily to
target C++ programming learners and did not examine whether learning
environments would also affect learners’ perceptions of programming.

Virtual reality is a potential tool to increase learners’ self-efficacy,
since the emotional arousal created by high-fidelity simulations can
change how one identifies with him/herself [20].

2.2 Immersive Learning Environments

Software tools play an essential role in helping students to learn.
Learning environments can be non-stereoscopic (desktop applications),
stereoscopic applications, or mixed. Most published studies focused
on 3D desktop applications, which lack stereoscopy and head tracking,
essential features for VR immersion [25, 30, 36, 37]. In a recent survey,
only 13 papers published after 2013 evaluated VR systems [45]. For
this reason, our understanding of the possible benefits of immersive
programming is still lacking. Claims for explaining VR effectiveness
often include: support for new forms and methods of visualization;
unique first-person non-symbolic experience; increased motivation;
and increased realism, which allows opportunities for insights from
different perspectives [42]. To date, few studies explicitly modeled VR
effects in comparison with non-VR environments.

Programming tools that use strategies such as games, storytelling, or
different types of visualization aids are often preferred by the students
[52]. There is some evidence that immersive learning environments
can help novice programmers to better understand abstract computer
science concepts, but there were no studies conducted to evaluate the
potential benefits of actual programming or to obtain recommendations
for optimal instructional design [4]. In a more general way, which type
of programming would benefit the most from virtual spaces? In this
study, we select the domain of 3D Programming, which we believe
can benefit the most from VR’s unique affordances. We also select
one specific aspect of learning (self-efficacy) and derive a model that
contrasts the impact of the VR environment when compared to a similar
PC version.

2.3 Spatial Ability

The term spatial ability is used to describe multiple cognitive aspects
related to capacity to understand, remember, or mentally transform
visuo-spatial objects [60, 61]. High spatial ability has been associated
with increased performance in visualization tasks in multiple domains,
such as mathematics, engineering, and architecture. During the ma-
nipulation of objects, it can help to integrate and identify specific
viewpoints [26].

Researchers have identified different factors, such as the ability to
quickly rotate simple items, perspective change, or combine sequences
of transformations [32]. One major factor separation is between small-
scale spatial ability, which involves spatial manipulation at the object
level, and large-scale spatial ability, which requires object manipulation
at the environment level. Small-scale ability is measured by tasks that
typically require an allocentric point of view (e.g., rotating an object
in space) while environment-level requires an egocentric point of view
(e.g., perspective taking) [27]. This difference seems to indicate that
the person’s ability to mentally manipulate a visual stimulus from a
stationary point of view is distinct from the ability to reorient oneself
in space.

Lages and Bowman found evidence that spatial ability affects the
optimal way to interact with visualizations in virtual reality. When
comparing walking vs hand manipulation, they found that participants
with previous game experience but low spatial ability performed better
using the manipulation technique instead of walking [29]. Barrera
Machuca et al. followed a similar approach, this time to study the
effect of the user’s spatial ability on 3D immersive drawing [2]. They
found that participants ranking higher in spatial ability achieved higher
drawing performance, even when using a worse control method (hand-
based). Recently, Drey et al. conducted a more detailed investigation
of spatial ability impacts on VR manipulation [13]. They found evi-
dence that higher spatial abilities resulted in significantly shorter task
completion times and more targeted manipulations. They also found
that lower spatial abilities can be compensated by improved interaction
techniques.

In multimedia learning, multiple studies have shown the role of
spatial ability in supporting learning. When comparing the perfor-
mance of high and low spatial ability learners, some studies have found
low spatial ability learners benefit most from 3D interactive learning
environments [30, 56], but some found the opposite [31, 64]. Some
have found that the effect is more significative for non-dynamic rather
than dynamic visualizations, while others have found the opposite [19].
Carbonell-Carrera et al. studied the effectiveness of using a game
engine for geospatial training [8]. The authors found that training to
identify and locate landforms yielded significant improvement on some,
but not all, perspective-taking measures.

In computer science education, the link between spatial ability and
computing success was established with early evidence that learning
BASIC could improve students’ spatial skills [35]. Multiple subse-
quent studies found connections between different measures of spatial
abilities (e.g., spatial visualization, perceptual speed) and measures of
interest in computer science, such as program comprehension, indicat-
ing that they share an underlying ability [43].

To explain the link, Margulieux, proposed the Spatial Encoding
Strategy theory (SpES), which posits that developing spatial skills
allows people to develop better strategies for encoding non-verbal
information and identifying landmarks for orientation [33].This in turn
reflects in correlations with spatial ability and programming success.

In general, the interaction of spatial ability and visualization tasks
needs to be further investigated, particularly in immersive learning
environments. To the best of our knowledge, this is the first study
connecting 3D programming and spatial abilities.

2.4 Tools for 3D Programming
Many of the concepts in 3D programming are difficult to understand
and teach because they require connecting an abstract, mathematical
idea (e.g., multiplying a vector by a quaternion) to an actual spatial
operation (a rotation). In addition, reasoning about 3D operations (and
programming in general) is correlated with spatial ability which varies
in the population [50, 61].

One of the challenges of building programming environments for
VR lies in the heavily symbolic nature of programming, which makes
it hard to execute using traditional VR input devices. For this reason,
effective programming environments often use visual languages for
programming. Alice is a 3-dimensional interactive animation program
visualization environment. Novice programmers build animated 3-D
movies and author games while learning introductory object-oriented
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programming concepts. Alice has an extension under development that
allows users to play worlds in VR, but it is limited to visualizing worlds
built in the 2D tool [11].

Another example is the research programming environment 3D-VPL.
It uses tridimensional blocks to represent classes and objects. Users can
move around and add or remove objects to visualize programming con-
cepts [39]. Unlike 3D-VPL, our proposal uses an actual block language
and requires less user interaction on the manual code organization as
the code lines grow larger.

My Reality (MYR) is another environment that combines program-
ming with a virtual reality visualization [4]. However, MYR requires
users to use a Web-Based platform outside VR to write code. Instead,
we propose a learning environment where students don’t need to switch
back and forth between two platforms to modify their current work.
We expect an all-in-one VR experience will lead to improved user
experience and sustained embodied benefits.

2.5 Block-based Programming Environments

In the last two decades, block-based programming environments such
as Scratch [49] and Alice [11] became part of the computer science
educational landscape. Block-based editors allow users to program by
manipulating visual elements instead of text. They have the advantage
of removing typing issues and the need to memorize the language
structure and syntax. Instead, users can browse the set of available
commands from a palette and combine them. Command blocks have
specific colors and shapes, providing visual cues on how they can be
correctly combined [67]. In VR, the main advantage of block-based
programming environments is the ease of composing scripts without
using a physical keyboard.

Block-based programming has been adopted to lower the barrier to
programming across a variety of domains, including mobile develop-
ment [55], art [3], databases [62], robots [66], and parallel program-
ming [16]. Research has shown that students become more interested
in computer science after working in a block-based interface and that it
can help with student retention in CS departments [38, 67].

3 ABACUS 3D PROGRAMMING ENVIRONMENT

Abacus is a visual programming environment developed in Unity3D
that allows the creation of procedural and interactive 3D scenes in both
VR and desktop. Users can write scripts in block-based language to
procedurally create interactive and dynamic scenes. We went through
several iterations during the development process and evaluated differ-
ent interaction techniques and back-ends. The final version implements
user-adjustable floating UI panels which can be used to code, control
execution, and see tutorials. The programming environment consists
of: a) a block-based language interpreter, b) a set of 3D techniques for
interaction, and c) UI interfaces for programming and auxiliary tasks.

In desktop mode, users navigate using a first-person controller. The
W, A, S, and D keys are used to move, the space bar to jump, and the
mouse controls the camera orientation. Interaction with the UI in the
desktop mode uses a mouse and keyboard (Figure 2).

In the VR mode, users can move around using natural walking or
teleportation. A ray attached to the controller is used to interact with
UI elements, including a virtual keyboard with a standard QWERTY
keyboard layout with 43 keys. Due to the use of blocks, the virtual
keyboard is only needed to name variables. The floating UI panels
allow users to manage different aspects of the coding process. The
block panel displays the various blocks available for coding, grouped
by categories. The variable panel enables users to create, delete, and
inspect variables. The script panel is an empty canvas where the blocks
can be freely placed. Multiple scripts to be placed on the same panel
and executed simultaneously. It also allows users to save and load
scripts (Figure 1, left).

We also created a curriculum viewer to support instruction activities,
allowing users to hear audio instructions and animated task images.
The tutorial audio clips can be played on the tutorial and task panel
with AI-generated voice so that users don’t have to read the lengthy
text documentation. The audio player shows the current progress of the

Fig. 2: Abacus in Desktop mode. The screen is divided into two areas.
Left: block menu. Right: script canvas. Once the play button is pressed
(bottom right), the user can move around the 3D environment as in a
first-person game.

tutorial clip, and users can mark a tutorial status as completed or in-
completed to track the tutorial progress. Animated task images are also
provided to visualize different checkpoints’ expectations within instruc-
tional modules, which can help users progress step-by-step through a
problem.

3.1 Blocks
Abacus executes visual blocks directly in native C# runtime without
any middle layer interpretations, making the execution of Abacus rea-
sonably fast. Abacus block editor was based on the Play Mode Blocks
Engine [59], and each coding block is specified by a C# class. Cod-
ing blocks with similar instructions can share the same base C# class,
making it easier to maintain and extend than plain text. Most coding
block implementation bugs could be caught at compile time rather than
at runtime, making troubleshooting easier.

Block-based editors, such as the one used in Scratch, use different
block slot shapes to distinguish different values and variable types.
Instead of requiring users to drag matching blocks into the block slots,
some Abacus blocks use a selection menu that shows only the correct
types. For example, a vector block requires variables of type vector.
Instead of a block slot, a selection button in the block allows the user
to quickly select the desirable variable from all the existing variables
of this type. For the study, we created a special restricted mode (Task
Mode), where only features relevant to our task were visible.

There are twelve block groups available in Abacus:
• The Event section contains blocks that respond to predefined

events in Abacus. The event blocks are the entry points for their
corresponding event. Thus, users can append code scripts at the
end of them to be triggered when Abacus calls the event.

• The Models section contains blocks that help with using 3D
models. Currently, Abacus supports two ways to build models: 1)
loading existing models from the asset folder and 2) creating new
objects from parametric primitive models.

• The Transform section contains blocks that manipulate the posi-
tion, rotation, and direction of the object variable.

• The Control section contains blocks that have basic control over
the execution flow of the coding script, including repeats (loops),
breaks, waits, and if statements.

• The Interaction section contains blocks that can add interactions
to the models stored in the object variable. This section was
hidden in Task mode.

• The Visual section contains blocks that can change the visualiza-
tion of the model stored in the object variable. This section was
hidden in Task mode.

• The Sound section contains blocks to play audio clips (more ad-
vanced behavior-related blocks, such as audio control and spatial
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audio, are scheduled as part of future work). This section was
hidden in Task mode.

• The Operators section contains blocks for arithmetic operations
and comparison operations. This section was hidden in Task
mode.

• The Logic Gates section contains blocks that provide logic gates
for Boolean operations. This section was hidden in Task mode.

• The Value Variables section contains buttons, windows, and
blocks that help users define and manipulate value variables (vari-
ables containing a number or string). This section was hidden in
Task mode.

• The Object Variable section contains buttons that help users define
object variables (variables that contain a model).

• The Vector Variable section contains buttons, windows, and
blocks that help users define and manipulate vector variables
(variables containing a vector).

3.2 Preliminary Evaluation

To investigate the general usability of the system, coverage of blocks,
and its suitability for creating creative content, we conducted two
formative studies. The first was focused on evaluating the coverage of
blocks and their suitability for creative work. We conducted a group
exploratory session with 10 art students, sharing 4 VR workstations.
Participants were initially briefed on the current state of VR for art
creation, the motivation and contribution of the project. Then, they
received information about the basic VR interaction and did a coding
block tutorial inside Abacus. Next, the participants were asked to create
something unique using any of the coding blocks provided. The session
took approximately two hours.

The goal of the second study was to test the general usability of
the VR and PC interfaces and evaluate the two tasks proposed for the
main study. We invited three participants with limited programming
experience to complete the tasks in both VR and PC modes. They were
instructed to give feedback about the difficulty of the tasks and clarity
of the instructions.

In the exploratory session, participants created different types of
scenes by carefully composing existing objects in the scene and using
loops to place a single asset multiple times. Collaboration between the
participants emerged naturally, with participants taking turns in the VR
headset and giving ideas and instructions by looking at the monitor.

Most participants in both studies showed a positive attitude towards
using Abacus in the future. Students with prior block-based experience
immediately recognized the Scratch-like interface in Abacus and were
able to start programming immediately. Participants without previous
experience in block-based programming spent more time understanding
how each block worked and the need for the start special block. For the
final study, we included two tutorials that explain how the blocks can
be used together. We also renamed some blocks to make their function
more clear. Finally, we improved the descriptions for the Programming
Test of the Background Questionnaire, since it was unclear to one of
the participants in the second study.

Although the early stage of Abacus did not provide as many coding
blocks, we also observed that participants in both studies had diffi-
culty locating blocks from different sections. For the final study, we
implemented a focused interface that hides the blocks completely unre-
lated to the tasks. We believe this would not be an issue during actual,
long-term usage.

4 METHODS

To investigate our research questions, we conducted a study where
participants completed coding tasks either in VR or PC. The study was
approved by the Virginia Tech Institutional Review Board, protocol
number 21-789. Written informed consent was obtained prior to the
beginning of the study.

4.1 Participants
We recruited 46 university students from a large research university
by sending recruitment information to several university mailing lists.
Participation was restricted to individuals 18 years or older, able to
follow instructions in English, with perfect or corrected vision (lenses
or glasses), and basic programming knowledge. After expressing their
initial interest in the study, participants received a follow-up email
containing the link to schedule the 60-minute lab session, a link to the
background survey, and a unique participant ID that would be required
at the beginning of all surveys. Six participants did not complete the
lab session and were dropped .

Of the 40 participants remaining, 33 were computer science majors,
2 were computer engineering majors, 1 applied statistics major, 2 me-
chanical engineering majors, 1 industrial systems engineering major
and 1 from creative technologies. From the undergraduates, 1 was in
the first year, 3 in their second year, 15 in their third year, and 11 in their
last year. Of the graduates, 6 were in a master’s program, and 4 in a
PhD program. Of the participants, 9 had never used VR, 26 rarely used
one, 4 used once a week, and 1 used weekly. Regarding the previous
experience, participants had on average 4 years of programming expe-
rience and were able to understand simple code expressed as a block
sequence (described in Section 4.4). Only two participants were not
English native speakers. We did not collect gender or age information
(most undergraduate students in the United States are between 18 to 22
years old). Table 1 lists the other relevant statistics.

Table 1: Minimum, mean, median, and maximum values for the number
of years programming, programming test score, programming experience
(questionnaire), and Cube Rotation Test score

Min Median Mean Max
Years Programming 1 4 4.59 13
Programming Exp. 47 100 93.76 100
Programming Test 0 100 83.82 100
Mental Rotation -5 -10 9.82 19

4.2 Design and Procedure
We followed a between-subjects design, with 20 participants assigned
to one of two conditions: VR or PC. In each one, participants inde-
pendently completed two programming tasks: a procedural task (Tree
Forest) and a math task (Solar System). The order of the tasks was
alternated within each mode. Before each task, the experimenter guided
the participants through related programming tutorials. Each partici-
pant completed a programming self-efficacy questionnaire three times
throughout the study session: first, before the first tutorial (PreSE), the
second, before the second tutorial, and the third, after the second task
(FinalSE).

After, they completed the System Usability Scale (SUS), NASA Task
Load Index (TLX), and User Experience Questionnaire Short (UEQ-
S). A short three-question semi-structured interview was conducted
at the end of the study. If the participant was assigned to the VR
programming environment condition, an additional VR experience
background questionnaire was completed at the beginning of the study
(Figure 3).

4.3 Apparatus and Settings
In the VR condition, Abacus (VR Mode) was presented in the HTC
VIVE Pro VR headset (1440 x 1600 resolution per eye, 98 degrees
of horizontal field of view, 90 Hz refresh rate), with Vive standard
controllers. Raycasting was used to manipulate the blocks, type in the
virtual keyboard, and interact with interface controls. Participants were
standing in a room-scale tracked area and allowed to physically walk
or use teleport to move around. In the PC condition, Abacus (Desktop
Mode) was presented using a standard monitor (1920x1080 resolution),
mouse, and keyboard. Participants were seated and used a standard
mouse and keyboard (Figure 2). Both conditions used, thus, the same
software, blocks, menu layout, and programming interface.
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Fig. 3: Each participant must complete the background survey before
arriving. Participants assigned to the VR programming environment
group must complete the VR experience questionnaire (VREQ) upon
arrival; the self-efficacy questionnaire (SEQ) is taken three times, with
the first time before tutorial one (Tu1), the second time after task one
(Ta1) and before tutorial two (Tu2), and the last time after task two (Ta2);
the System Usability Scale (SUS), NASA Task Load Index (TLX), and
User Experience Questionnaire Short (UEQ-S) are taken right before the
interview at the end.

4.4 Background Survey
The study details and content page were listed on the first page of the
background survey, which participants had to agree to before continu-
ing. The background survey had six sections that took between fifteen
to twenty minutes to complete and included demographic information,
device usage questionnaire, self-efficacy questionnaire, the Cube com-
parison test [14], programming experience questions, and a block-based
programming test.

4.4.1 Programming Concepts
Since 3D programming is a specialized programming domain, we
included instruments to verify that participants were sufficiently com-
fortable with fundamental programming concepts.

The programming experience section was a modified version of
the Measuring Programming Experience Questionnaire [15] where we
included an additional table of programming concepts and asked partic-
ipants to fill in the familiarity (“I am not familiar with it”, “I’ve heard
of it”, “I know what it is”, “I used it before” and “I am familiar with
it”) with each programming concept (“integer”, “float”, “boolean”, “ar-
ray/list”, “variables”, “assignment”, “if statement”, “switch statement”,
“for loop”, “while loop” and “functions/methods”).

We also included a programming tests section, with two simple
programming quizzes written in a Scratch-like form One test was
designed to check participant’s understanding of variables. The second
was designed to test the participant’s understanding of the loops (the
same set of movements has been repeated three times with the repeat
block). Explanations of each block used in the two programming tests
were also provided to the participants. Fig. 4 shows the Loop test.

Fig. 4: The Loop test, one of the two programming tests in the Back-
ground Survey. We ask for the final position of the cat after the execution
of the code snapshot on the left. A similar task was used check the
understanding of variables.

4.4.2 3D Programming Self-Efficacy Scale

The Self-efficacy Scale consisted of 17 items. Following Bishop et
al.’s Secure Programming Self-efficacy scale [5], we included two
sub-scales: one for general programming and one to make it specific
to 3D programming. For general programming, we used Bishop et
al.’s sub-scale, removing one item that explicitly mentions computer
science classes. For generality, we also included five items from Rama-
lingam and Wiedenbeck’s "Independence and Persistence" sub-scale,
so it could probe the individual’s confidence to complete the tasks in
different scenarios [48].

For the 3D programming sub-scale, we constructed five questions
around meaningful fundamental tasks, such positioning and rotating
objects:

• I can write a script to create one object in the 3D environment;

• I can write a script to create multiple objects in a line in the 3D
environment;

• I can write a script to create multiple objects in multiple lines in
the 3D environment;

• I can write a script to rotate and object procedurally;

• I can write a script to rotate an object around another object
procedurally;

As in Ramalingam and Wiedenbeck, all items were scored in a 7-
point Likert-type scale ranging from 1 to 7 (1 = “not confident at all,”
2 = “mostly not confident,” 3 = “slightly confident,” 4 = “50/50,” 5 =
“fairly confident,” 6 = “mostly confident,” 7 = “absolutely confident” ).
The maximum score for the 3D Programming Self-efficacy scale is 119
(17 questions with 1-7 points for each question).

An analysis with pre-test data indicated good reliability, with a
Cronbach Alpha coefficient of 0.825 for the whole self-efficacy scale
consisting of 17 items; 0.838 for the 3D sub-scale consisting of 5
items; 0.807 for the general programming sub-scale; and 0.787 for the
Independence and Persistence sub-scale consisting of 7 items.

4.4.3 Spatial Abilities Test

For measuring spatial ability, we selected the S2 - Cube Comparison
test, from the Kit of Factor-Referenced Cognitive Tests from Edu-
cational Testing Service (ETS) [17]. In this test, assuming no cube
can have two identical faces, the subject is asked to indicate which
pairs of drawings can be of the same cube or not. It has two sections
with 21 questions, each one administered with a 3-minute time limit.
We selected a single test to keep the time commitment to the study
manageable.

The Cube Comparison test was selected for being a standard and
widely used test involving 3-dimensional figures. In addition, later
work found that it is strongly related to one’s ability to imagine the
movement of an object or group of objects in an object-based frame
of reference. This factor seems more pertinent to 3D programming
than tests associated with perspective-taking and navigation. From the
other three tests that loaded on this factor (Card Rotation (S-1), Paper
Folding (VZ-2), and Guilford– Zimmerman Spatial Orientation (S-3)),
the cube rotation had the highest load [27].

According to Carroll [9], the Cube Comparison test also involves
factors related to the capacity of the visual short-term memory (STM).
The performance seems to be mediated by spatial memory, so the
results should be considered as also reflecting this factor [65].

4.5 Programming Tasks

In this section, we explain the two 3D programming tasks used in the
study. Both required participants to express spatial ideas in terms of
code. Before each task, participants completed a tutorial that allowed
them to explore the functionality of the blocks necessary to complete
the tasks.
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Procedural Task - Tree Forest
The procedural task focuses on the use of loops to compute equally
spaced points in a plane. The goal of Tree Forest is to build a tree forest
that has 25 trees and arrange them in the shape of a square of five by
five. To accomplish this task without loading and placing each tree,
participants need to combine finite loops with vector manipulations.
The Pine tree is a model asset provided within Abacus and could be
loaded with the Models-Load-Asset-Scale Block. The task was broken
down into three steps to help participants proceed from start to finish.
An image of the expected output is provided for each step for each
participant to view at any time during the task.

For the first step of the procedural task Tree Forest, the goal is to
create a single pine tree. A single Models-Load-Asset-Scale Block with
a selection of the pine tree asset and the scale of one would be enough
to complete this step. The reference code solution is not provided to
participants during the task.

Fig. 5: Procedural task Carousel. Left: The final goal of this task is
to generate a forest by loading trees in the correct places. Right: an
overview of a solution code.

For the second step of the procedure task Tree Forest, the goal is
to create one line of five pine trees. A finite loop of five is needed
for this step, which could be done with the Control-Repeat-Number-
Times block, as it performs the repeated process of creating a single
pine tree five times. Additionally, a vector variable is needed to store
and manipulate the positional data of each pine tree, which could be
done within the VectorVar-NewVariable window. The VectorVar-Add-
Variable block adds an offset to the positional vector for the spacing
between pine trees. Finally, a Transform-Set-Position block is needed to
set each pine tree to the positional vector each time after making a new
pine tree. The reference code solution is not provided to participants
during the task.

For the third and final step of the procedural task Tree Forest, the
goal is to create a five-by-five-tree forest that repeats the previous step
five times. Another finite loop of five is needed for this step which
could be done with the Control-Repeat-Number-Times block, as it
performs the repeated process of creating a line of five pine trees,
which was accomplished in the previous step five times. Additional
manipulations of the positional data are also required, adding an offset
on the other axis of the vector for spacing on another dimension, which
could be done with the VectorVar-Add-Variable block and resetting the
previous dimension back to zero to create a new line of pine trees from
the beginning, which could be done with the VectorVar-Set-Variable-
X block or the VectorVar-Set-Variable-Z block. The reference code
solution is not provided to participants during the task.

Before this task, participants were guided through a similar task:
Brick Wall. In this tutorial, participants built a brick wall with 100
bricks arranged in the shape of a square of ten by ten. The tutorial has
been broken down into three steps to help participants progress from
start to finish: 1) create a single brick, 2) create a line of bricks with
one loop, create a brick wall by nesting another loop. The reference
code solution was provided to participants during the tutorial and could
be accessed within the ToDo Panel.

Math Task - Solar System
The math task explores the use of vectors and rotation in spatial pro-
gramming. The goal of Solar System is to build a solar system that

has the Sun rotating around itself at the center and the Earth orbiting
around the Sun. To accomplish this task, participants use infinite loops
in tandem with directional vector manipulations. The Sun and Earth
are provided model assets within Abacus and could be loaded with a
Models-Load-Asset-Scale block. The task was broken down into two
steps to help participants proceed from start to finish. A short video of
what was expected at each step was provided for participants to view at
any time during the task.

Fig. 6: Math task Solar System. Left: the final goal of this task is to
generate an animated solar system. Right: an overview of a solution
code.

For the first step of the math task Solar System, the goal is to create
the Sun, which is an available model asset from Abacus, and then make
it self-rotating. In addition to a Models-Load-Asset-Scale block to
load the Sun, a vector containing the rotational data is required for
the rotation, which could be done within the VectorVar-NewVariable
window. Since the Sun is continuously rotating as the program starts,
an infinite loop (Control-Repeat-Forever block is needed with the use
of the Transform-Change-Rotation block to update the Sun rotation.
The reference code solution is not provided to participants during the
task.

For the second step of the math task Solar System, the goal is to
make Earth move around the Sun. Earth only needs to be placed in
the relative direction of the Sun, which could be obtained with the
Transform-Store-Forward block or Transform-Store-Right block. To
extend the radius of movement, a VectorVar-Multiple block is needed
to multiply the magnitude of the direction vector. The reference code
solution is not provided to participants during the task.

Before this task, participants were guided through a similar task:
Carousel. The goal of this tutorial was to build a carousel with the
center platform rotating around itself and two horses moving in the
opposite direction around it. The implementation used an infinite loop
and directional vector manipulations. The tutorial has been broken
down into three steps to help participants progress from start to finish:
1) load the carousel model and make it rotate around itself, 2) create
two horses and make them move in the opposite direction around the
carousel. The reference code solution for each step was provided to
participants during the tutorial and could be accessed within the ToDo
Panel.

4.6 Interviews
At the end of each study session, we conducted a short interview with
the following questions:

• Q1: Were the instructions for creating the forest and solar system
tasks unclear? What additional information or clarification would
you suggest to reduce confusion?

• Q2: Did the tutorial provided before the tasks (creating the forest
before the wall, creating the carousel before the solar system)
assist you in completing the tasks (creating the wall, making the
solar system)?

• Q3: Is there any other feedback you would like to provide to
help us improve the tutorial, tasks, or interface? Additionally,
what potential future developments do you envision for this 3D
programming tool?
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5 RESULTS

All analyses were performed using R Statistical Software (v4.3.2; R
Core Team 2023) [46].

5.1 Descriptive Analysis
5.1.1 Self-Efficacy and Competency
We first report the correlation between programming competency, men-
tal rotation, and self-efficacy for the sample group. We used the Rob-
cor [54] package to calculate robust estimates of the coefficients. The
correlation between mental rotation and years of programming was
weak (.082). We also found a weak correlation between mental rota-
tion and experience (.120). The correlation between the two compe-
tency measures was moderate (.500). The correlation between pre-test
self-efficacy and experience was strong (.885), as was the correlation
between pre-test self-efficacy and years of programming (.826).

After the test, self-efficacy increased on average in both groups,
with the largest increase happening after the first task (Figure 7). The
overall self-efficacy distribution was negatively skewed, so we used the
Wilcoxon tests with continuity correction for a preliminary analysis. To
compare the increase in self-efficacy, we used the Wilcoxon Rank Sum
Test. The majority of the participants reported increased self-efficacy
(V=561, p <.001). There was an overall significant difference after the
first task (V=561, p <.001) and between the first task and the second
(V=9, p <.001). To compare the self-efficacy between VR and PC we
used the Wilcoxon Rank Sum Test with continuity correction. There
was no significant difference between the rate of improvement of self-
efficacy between PC and VR users (W=348, p=0.893). Table 2 lists the
relevant descriptive statistics.

Table 2: Minimum, mean, median, and maximum values for Pre-test
self-efficacy(Pre), self-efficacy after the first task (Mid), and self-efficacy
after the second task (Final SE)

Min Median Mean Max
PreSE 34 78.0 79.29 119
MidSE 74 96.5 98.97 119
FinalSE 80 107.0 104.35 119
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Fig. 7: Raw values of self-efficacy before and after each task.

5.1.2 Usability and Task Time
Regarding time, a Wilcoxon Signed Rank Test showed no significant dif-
ferences between the time spent on the first and second tasks (V=342.5,
p=.447). A Wilcoxon Signed Sum test also reported no significant
difference between PC and VR for Task1 time (W=107, p=.255), Task2
time (W=120, p=.495), and total time (W=87.5 p=.069).

A Kruskal-Wallis Rank Sum test showed no significant difference
between the participants with high and low spatial ability (mean 14
and 5 respectively), when using the mean Mental Rotation as a cut-
point. This was true for Task1 time (χ2 = 1.90, p = .59), Task2 time
(χ2 = 4.20, p = .24), and Total time (χ2 = 6.00, p = .11).

The median values (76.8) and mean (76.18) for the usability question-
naire of the system and the user experience questionnaire (3.07, 3.19) in-
dicate above-average usability. A Wilcoxon Rank Sum Test showed no
significant differences between VR and PC for SUS (W=162,p=.450),
UEQ (W=151.5, p=0.700), and TLX (W=133, p=0.820). Table 3 shows
the descriptive statistics.

Table 3: Minimum, mean, median, and maximum values for time in Tasks,
System Usability Questionnaire (SUS), User Experience Questionnaire
(UEQ), and NASA Task Load Index (TLX)

Min Median Mean Max
Time Task1 101 388.5 431.1 1244.0
Time Task2 116 333 382.0 104.35
Total Time 291 772 813.1 1537.0
SUS 57.7 77.5 76.18 100
UEQ 0.15 3.07 3.19 5.07
TLX 57.50 77.5 76.18 100

5.2 Model Analysis

Based on the prior work and our preliminary study, we hypothesized
that prior programming experience and spatial ability would explain
the effectiveness of VR in improving self-efficacy. Both contribute to
reducing cognitive load and, consequently, to a better use of the VR
features.

To test this hypothesis, we modeled the percentage increase in self-
efficacy between the first and last measurements using spatial ability
and prior block-based programming competency as co-variates of ap-
plication mode (VR or PC). Using a ratio-dependent variable allows
for easier comparative analysis, independent of the scale and absolute
values. The test score was encoded as an interval variable. Mental
Rotation and Experience were scaled and centered to ease interpreta-
tion. We used the glm function from the R Stats package for fitting and
the DHARMa [18] package (v0.4.6) for model diagnostics. For model
fitting, three participants were dropped because they were missing
predictor data.

We compared three linear models with alternative proxy variables
for competency: self-reported years of programming (Years), pro-
gramming experience (Experience), and results of pre-test scores (Pre-
Test). The full model using Experience had a significantly better fit
(p=.0144 and lower AIC). Switching to a log link also improved
the fit (p<.001 and lower AIC), possibly due to a nonlinear rela-
tionship between predictors and response. The final model selected
was: FinalSE/PreSE ∼ MentalRotation∗Experience∗Environment
(AIC=-21.306). Table 4 lists the coefficients of each predictor term.

We assessed the fit of the model regarding the collinearity of pre-
dictors, dispersion, zero inflation, and uniformity of the residuals, and
outliers using the DHARMa library. Correlation between all the terms
of the additive model were low (VIF < 1.58), nonparametric disper-
sion tests of residuals distribution were non-significant (SD of resid-
uals fitted vs simulated, dispersion=0.797, p=.4242), outliers (Exact
binomial test, outliers=0, p=1), Dharma zero-inflation test (p=1), Uni-
formity (one-sample Komogorov-Smirnov two-sided test, D=0.13547,
p=.5606). McFadden’s R-Squared was 0.826. Together, the model
diagnostic points to a good fit.

The fitted model indicates important contributions of the interac-
tion between MentalRotation and Environment. When controlling for
experience, individuals with lower spatial skills show higher relative
improvement in self-efficacy in the VR than those in the PC environ-
ment. As spatial skills increase, the relative gain of both environments
converges (Figure 8).

Regarding experience, the fitted model indicates that when con-
trolling for spatial ability, gains in self-efficacy reduce as the prior
experience of the individuals increases (or equivalently, that our in-
tervention was more beneficial to those with less experience). The
relative gains are higher for VR users, with the difference from PC
users decreasing as experience increases (Figure 9).
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Predictors Estimates CI p
(Intercept) 0.34 0.27 – 0.40 <.001
MentalRotation -0.00 -0.07 – 0.07 .966
Experience -0.28 -0.40 – -0.16 <.001
Environment VR 0.08 0.02 – 0.15 .008
MentalRotation X Experience 0.13 -0.01 – 0.28 .089
MentalRotation X Environment VR -0.08 -0.15 – -0.01 .037
Experience X Environment VR -0.10 -0.23 – 0.01 .090
(MentalRotation X Experience) X Environment VR 0.11 -0.03 – 0.26 .143
Observations 34
R2 0.826

Table 4: Estimates, confidence intervals, and p-values for the predictors of the model.
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Fig. 8: Predicted values of the relative increase in self-efficacy (before
and after the intervention). The model indicates that VR provides higher
improvement rates than PC for individuals with low spatial skills.

5.3 Interview Results
Regarding the instructions used for the programming tasks, 20 partic-
ipants found the instructions for the given tasks to be clear and not
confusing; 6 participants suggested that the instructions could be im-
proved to reduce confusion. Regarding the tutorial introduced before
the programming tasks, 19 participants found the tutorial helpful in
completing the tasks; 5 participants found the tutorial to be somewhat
helpful. Several respondents suggested improvements to the 3D pro-
gramming tool, including better code visualization and debugging tools,
more helpful VR controls and interactions, and more interesting visu-
alization options. In addition, many respondents suggested that the
task instructions could be improved with more visual aids or examples
to reduce confusion. There were also suggestions for more advanced
features, such as physics simulations and real-time collaboration, and
for more advanced tutorials for more complex projects.

6 DISCUSSION

In this study, we directly compared the rate of improvement in self-
efficacy in VR and PC. The findings indicate that VR was more effective
than PC in raising participant’s self-efficacy, particularly for those with
lower spatial abilities or low experience.

6.1 RQ1: What is the impact of VR on student’s perceptions
of competency in programming?

Our fitted model indicates that self-efficacy gain in the VR condition
increases as the participant’s spatial abilities reduce. As discussed by
Lee et al. and Mayer, the behavior of VR participants is congruent with
the compensator hypothesis, which posits that participants with high
spatial skills gain less from VR because they don’t need the VR support
to perform well [30, 34]. Kuhl recently proposed that the apparent
inconsistency can be eliminated by assuming both as part of the same
continuum where the difference between optimized and non-optimized
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Fig. 9: The relative gains in self-efficacy reduce with experience. For
individuals with low experience, gains from VR are higher.

designs are more pronounced for medium-ability learners [28]. At the
higher end, high spatial skills dissolve the difference between VR and
PC.

Our results are also similar to the study of Sun et al. where it was
observed that low spatial ability learners had higher cognitive load
(measured by amplitudes of N1 and N2 potentials) in the presentation
slides-based environment than in the VR-based environment, implying
that VR facilitates the reduction of cognitive loads in LSA learners.
The P2 amplitude detected in HSA learners did not show any significant
difference in both learning environments, indicating that the VR-based
learning environment did not enhance their learning [56].

When looking at the effect of Experience, our model indicates that
both VR and PC learners in the lower end of the distribution had higher
gains. The improvement reduces at the higher end of the scale, where
participants indicate familiarity with all the fundamental programming
concepts. This could mean that students with more experience also
had higher spatial ability, possibly developed through programming
itself as discussed by Margulieux [33]. Instead, our model indicates a
reduced gain when keeping mental rotation constant. This is further
supported by the weak correlation found between spatial ability and
experience/years of programming. However, the correlation between
programming competency and initial self-efficacy was strong, which
is in agreement with Bandura’s self-efficacy theory (individuals with
initial low efficacy, experience the greatest gains) [1].

Abacus makes use of block language primarily because of the ease
of use in VR. However, by itself, block-based languages have a positive
effect on learners’ perceptions of ease of use of programming constructs
by modality and interest in future computing courses as well [67].

According to the Cognitive Load theory [41, 57, 58] instruction can
impose three types of loads on the learner’s cognitive system: intrinsic
load, caused by task complexity and prior knowledge; germane load,
caused by features beneficial for learning; and extraneous load, caused
by instructional features not directly linked to the learning [23, 40].
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The overall cognitive load, thus, can be affected by both interface
and instructional design. In our study, the intrinsic load due to the
complexity of programming itself was left at minimal because we
ensured participants had prior programming knowledge required to
complete the task and scripts were short. The germane load consisted
of the understanding of the 3D spatial operations required to accomplish
the desired tasks, which was our goal. However, there was additional
extraneous load: most of the participants were not very familiar with
VR or block-based languages, the interface was new to all of them, and
participants were able to freely explore the environment. These aspects
may have impacted low spatial ability participants more.

6.2 RQ2 - How does VR impact the usability of block-based
programming tasks?

Block-based programming environments such as Scratch rely on a
block palette, from which the user drags the desired block. In addition,
code refactoring requires selecting and repositioning specific blocks
in the code. This kind of selection works well in desktops since the
mouse is very precise. However, due to the lack of physical support,
pointing accuracy in 3D space is reduced by motor tremors, and their
effect is further amplified by distance [24, 63, 68]. Typing with a ray on
a virtual keyboard is also more inefficient and frustrating than typing
on a keyboard.

Because pointing and typing were replaced by raycasting, we ex-
pected to see a difference when compared to the same interface on
mouse and keyboard. However, we were unable to find any significant
difference in usability, as measured by the SUS, UEQ, and TLX. In
fact, the scores for SUS and UEQ indicated an above-average usability.
One of the reasons is that participants may have been able to prevent
the controllers from degrading by avoiding interacting with the pro-
gramming panel for a long distance. Our interface did not require a lot
of typing, which may also have helped.

Another reason may be that participants’ view of the system’s us-
ability may have been favorable. Merchant et. al [37] investigated
the relationship between usability (latent variable with contributions
from Perceived Meaningulness and Ease of Use), spatial orientation
(as measured by the Purdue Visualization of Rotations Test [7]) and
Self-Efficacy. Using path analysis, the authors tested the hypotheses
that Usability influences spatial orientation and self-efficacy, finding
significant positive relationships for both. In our view, their Usability
construct confounds two different aspects (system features and psycho-
logical aspects). Although it makes sense to think that lower usability
causes lower self-efficacy, participants may also find the system better
if they have higher self-efficacy. It is also not clear how Usability might
influence spatial orientation, which was only measured at the end of
the study.

We also did not find a significant difference in task performance
(as measured by time) between participants with high and low spatial
ability scores. This contrasted with previous studies, which found
that participants with higher spatial ability completed spatial tasks in
a shorter time [2, 13, 29]. We believe this is because our tasks were
relatively less demanding than the ones used in these prior studies.

It is interesting to note that several respondents found the instruc-
tions for the tasks to be straightforward and easy to follow, while others
suggested that more specific or visual instructions would be helpful.
This suggests that these learners may have different levels of spatial
thinking skills and may benefit from different types of instructions. Ad-
ditionally, the suggestion to improve the unit used in the programming
environment and grid system to help users better understand the spatial
relationships between objects in the virtual space is a valuable finding
for improving the user experience. The suggestion to simplify the word-
ing for programming blocks relating to vector and transform functions
could also be valuable for programmers who may not be familiar with
these concepts. Finally, the suggestion that the 3D programming tool
could be used for both entertainment and education purposes is an
interesting finding for future development and application of the tool.

7 LIMITATIONS AND FUTURE WORK

Inferences based on few exposures, when participants are adjusting
to the novelty of a medium can be misleading or incomplete. Since
learners’ motivation is partially determined by their perception of nov-
elty, it may attenuate gradually over time due to familiarity [10, 21, 22].
Long-term studies are needed on novelty effects and the persistence of
the improvements. This will help elucidate VR’s sustained impacts on
programming self-efficacy.

Due to the convenience sampling, we were not able to match or
control the coverage of the covariates used in the modeling (spatial
ability and experience). This power may be insufficient to investigate
some of the moderation at all levels of these variables. In addition,
because they are likely to affect the impact of VR learning, our findings
may not generalize to other populations (e.g., younger learners, less
experienced learners, or those with better spatial ability training). Fu-
ture work should look into larger and more diverse samples and ways
to improve the measurement and coverage of co-variates.

Future work should also look toward improving the instruments
used. Our scale for 3D programming self-efficacy had good internal
consistency (i.e. alpha = 0.70 or above). However, the scale can be
further improved with further development, by revising or replacing
some questions. In addition, our model used the S-2 (Cube Rotation
Test) as a measure of (small-scale) spatial ability. It is possible that
other factors may also contribute to 3D programming, which is left for
future investigation.

Although in this work we focused on the impact of virtual environ-
ments on self-efficacy, VR may be more effective in enhancing the
learning of 3D programming skills than non-VR media as well. Future
work should look into domain knowledge acquisition in both procedu-
ral and spatial skills. In addition, a different set of tasks may help to
provide a better coverage of 3D programming skills.

On the design side, the interaction techniques used in the Abacus
block editor could be improved. Even though a ray is a straightforward
translation of a mouse pointer that also conveys a simple metaphor,
it becomes less effective when there is a need to select parameters
for the blocks. Future work could look into better ways to edit block
code, for example, by using direct manipulation or other interaction
modalities; and exploring alternative ways to navigate the block library
and compose scripts.

Finally, the present study used a block-based environment to allow
for easier coding in VR and improve accessibility for learners. However,
some of the benefits observed may translate to other visual and non-
visual environments.

8 CONCLUSION

In this paper, we presented the design and implementation of Abacus, a
visual programming environment that allows the creation of procedural
and interactive 3D scenes in both VR and desktop environments. We
investigated how VR impacts the learning experience of students learn-
ing 3D programming. Our findings indicate that, when controlling for
spatial ability, participants with less experience showed higher gains in
self-efficacy in the VR environment. When controlling for experience,
individuals with lower spatial skills show higher relative improvement
in self-efficacy in the VR than those in the equivalent PC mode. As the
spatial skills increase, the relative gain of both environments converges.
With the expansion of applications requiring 3D programming, immer-
sive programming learning environments may help novices achieve
higher levels of attainment.
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